Identification of domains on the fusion (F) protein trimer that influence the hemagglutinin-neuraminidase specificity of the f protein in mediating cell-cell fusion.
نویسندگان
چکیده
For most paramyxoviruses, virus type-specific interaction between fusion (F) protein and attachment protein (hemagglutinin-neuraminidase [HN], hemagglutinin [H], or glycoprotein [G]) is a prerequisite for mediating virus-cell fusion and cell-cell fusion. Our previous cell-cell fusion assay using the chimeric F proteins of human parainfluenza virus 2 (HPIV2) and simian virus 41 (SV41) suggested that the middle region of the HPIV2 F protein contains the site(s) that determines its specificity for the HPIV2 HN protein. In the present study, we further investigated the sites of the F protein that could be critical for determining the HN protein specificity. By analyzing the reported structure of the F protein of parainfluenza virus 5 (PIV5), we found that four major domains (M1, M2, M3, and M4) and five minor domains (A to E) in the middle region of the PIV5 F protein were exposed on the trimer surface. We then replaced these domains with the SV41 F counterparts individually or in combination and examined whether the resulting chimeras could mediate cell-cell fusion when coexpressed with the SV41 HN protein. The results showed that a chimera designated M(1+2), which harbored SV41 F-derived domains M1 and M2, mediated cell-cell fusion with the coexpressed SV41 HN protein, suggesting that these domains are involved in determining the HN protein specificity. Intriguingly, another chimera which harbored the SV41 F-derived domain B in addition to domains M1 and M2 showed increased specificity for the SV41 HN protein compared to that of M(1+2), although it was capable of mediating cell-cell fusion by itself.
منابع مشابه
Induction of Immune Response in Animal Model Using Recombinant Anti-NDV Vaccine
Background: Newcastle disease is a major avian disease that causes enormous economic loss in poultry industry. There have been a number of reports on the suitability of plant-based recombinant vaccine against this disease. Fusion (F) and hemagglutinin-neuraminidase (HN) epitopes of the Newcastle disease virus (NDV) represent the major immunogenic sites for development of recomb...
متن کاملSubcutaneous administration of a fusion protein composed of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis induces mucosal and systemic immune responses
Objective(s): After decades of containment, pertussis disease, caused by Bordetella pertussis seems to be re-emerging and still remains a major cause of reported vaccine-preventable deaths worldwide. The current licensed whole-cell vaccines display reactogenicity while acellular vaccines are expensive and do not induce Th1-type immune responses that are required for optimum protection against t...
متن کاملIdentification of an amino acid that defines the fusogenicity of mumps virus.
Recombinant cDNA clones representing the fusion (F) and hemagglutinin-neuraminidase (HN) proteins of two mumps virus strains different in fusogenicity were constructed. Upon transfection of COS7 cells, extensive cell fusion was observed only when cells expressed the F protein of the fusing strain together with the HN protein derived from either strain. Mutational analyses further showed that th...
متن کاملConstruction of Recombinant Bacmid DNA Encoding Newcastle Disease Virus (NDV) Fusion Protein Gene
Background and Aims: Newcastle disease virus (NDV) is one of the major pathogen in poultry. Vaccination is intended to control the disease as an effective solution nevertheless this virus is a growing threat to the poultry industry. F gene open reading frame (ORF) from NDV is 1650 bp, encoding a protein of 553 amino acids that can induce protective immunity alone. The F glycoprotein on the surf...
متن کاملIn silico design and expression of a novel fusion protein of HBHA and high antigenic region of FAP-P of Mycobacterium avium subsp. paratuberculosis in Pichia pastoris
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants and there has been a shift in the public health approach to MAP and human diseases like Crohn's disease. The prevention of infection by MAP in ruminants is thought to deter the high impact of economic losses in the level of dairy industry and possible spreading of this pathogen in dairy prod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 85 7 شماره
صفحات -
تاریخ انتشار 2011